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Abstract

Background: Access to neurological care for Parkinson disease (PD) is a rare privilege for millions of people worldwide,
especially in resource-limited countries. In 2013, there were just 1200 neurologists in India for a population of 1.3 billion people;
in Africa, the average population per neurologist exceeds 3.3 million people. In contrast, 60,000 people receive a diagnosis of
PD every year in the United States alone, and similar patterns of rising PD cases—fueled mostly by environmental pollution and
an aging population—can be seen worldwide. The current projection of more than 12 million patients with PD worldwide by
2040 is only part of the picture given that more than 20% of patients with PD remain undiagnosed. Timely diagnosis and frequent
assessment are key to ensure timely and appropriate medical intervention, thus improving the quality of life of patients with PD.

Objective: In this paper, we propose a web-based framework that can help anyone anywhere around the world record a short
speech task and analyze the recorded data to screen for PD.

Methods: We collected data from 726 unique participants (PD: 262/726, 36.1% were women; non-PD: 464/726, 63.9% were
women; average age 61 years) from all over the United States and beyond. A small portion of the data (approximately 54/726,
7.4%) was collected in a laboratory setting to compare the performance of the models trained with noisy home environment data
against high-quality laboratory-environment data. The participants were instructed to utter a popular pangram containing all the
letters in the English alphabet, “the quick brown fox jumps over the lazy dog.” We extracted both standard acoustic features
(mel-frequency cepstral coefficients and jitter and shimmer variants) and deep learning–based embedding features from the speech
data. Using these features, we trained several machine learning algorithms. We also applied model interpretation techniques such
as Shapley additive explanations to ascertain the importance of each feature in determining the model’s output.

Results: We achieved an area under the curve of 0.753 for determining the presence of self-reported PD by modeling the standard
acoustic features through the XGBoost—a gradient-boosted decision tree model. Further analysis revealed that the widely used
mel-frequency cepstral coefficient features and a subset of previously validated dysphonia features designed for detecting PD
from a verbal phonation task (pronouncing “ahh”) influence the model’s decision the most.
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Conclusions: Our model performed equally well on data collected in a controlled laboratory environment and in the wild across
different gender and age groups. Using this tool, we can collect data from almost anyone anywhere with an audio-enabled device
and help the participants screen for PD remotely, contributing to equity and access in neurological care.

(J Med Internet Res 2021;23(10):e26305) doi: 10.2196/26305
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Introduction

Parkinson disease (PD) is the fastest-growing neurological
disease worldwide. Unfortunately, an estimated 20% of patients
with PD remain undiagnosed. This can be largely attributed to
the shortage of neurologists worldwide [1,2] and limited access
to health care. Early diagnosis and continuous monitoring, which
allows medication dosage adjustment, are key to managing the
symptoms of this incurable disease. The current standard of
diagnosis requires in-person clinic visits where an expert
assesses the disease symptoms while observing the patients as
they perform tasks from the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [3]. The
MDS-UPDRS includes 24 motor-related tasks to assess speech,
facial expression, limb movements, walking, memory, and
cognitive abilities. Although many studies have shown success
by analyzing hand movements [4], limb movement patterns [5],
and facial expressions [6], speech is especially important
because approximately 90% of patients with PD exhibit vocal
impairment [7,8], which is often one of the earliest indicators
of PD [9].

For speech analysis, researchers have looked into phonations
(pronouncing “ahhh”) from audio recordings [10] to quantify
rhythm, stress, and intonation [11]. Little et al [12] introduced
pitch period entropy (PPE) as a measure of dysphonia to
distinguish healthy people from people with PD with 91%
accuracy. Later, Tsanas [13] expanded on this by calculating
132 dysphonia measures to classify PD versus control with
almost 99% accuracy. In addition, Peker et al [14] used a novel
feature selection technique with a complex-valued artificial
neural network. Rueda and Krishnan [15] identified a set of
mel-frequency cepstral coefficients (MFCCs) and intrinsic mode
functions to represent the characteristics of PD. In the domain
of analyzing real-life audio data, Wroge et al [16] analyzed
verbal phonation data collected from smartphones; Vaiciukynas
et al [17] used a convolutional neural network to detect PD from
speech; Vásquez-Correa et al [18] collected speech samples
with a handheld device in uncontrolled noise conditions; and
Dubey et al [19] designed a smartwatch-based voice and speech
monitoring system for people with PD receiving speech
therapies from speech-language pathologists. Although the
current state-of-the-art method has shown promising results, it
has limitations such as small sample size [12,19,20],
oversampling from the same participants [14], noise-controlled
data collection [12,15], and age discrepancy between PD and
control [21].

In this paper, we present our analysis of 726 audio recordings
of speech from 36.1% (262/726) individuals with PD and 63.9%
(464/726) without PD. The speech recordings were collected

using a web-based tool called Parkinson’s Analysis with Remote
Kinetic-tasks (PARK) [22]. The PARK tool instructed the
participants to utter a popular pangram containing all the letters
in the English alphabet, “The quick brown fox jumps over the
lazy dog,” and recorded it. This allowed us to rapidly collect a
data set that is more likely to contain real-world variability
associated with geographical boundaries, socioeconomic status,
age groups, and a wide variety of heterogeneous recording
devices. The findings in this study build on this unique
real-world data set; thus, we believe it could potentially be
generalized for real-world deployments.

Collecting audio data from individuals often requires in-person
visits to the clinic, limiting the number of data points and the
diversity within the data. Recent advancements have allowed
the collection of tremor data from wearable sensors [23] and
sleep data from radio frequency signals [24]. The existing work
with speech and audio analysis uses sophisticated equipment
for collecting data that are often noise-free [12,25] and do not
contain real-world variability. As a significant portion of the
population has access to a mobile device with recording
capability (eg, 81% of Americans own a smartphone) [26], we
opted to use a framework that allows participants to record data
from their homes. From the recorded audio files, we extracted
acoustic features including MFCCs, which represent the
short-term power spectrum of a sound, jitter or shimmer variants
(representing pathological voice quality), pitch-related features,
spectral power, and dysphonia-related features designed to
capture PD-induced vocal impairment [12].

In addition, we extracted features from a deep-learning–based
encoder—problem agnostic speech encoder (PASE) [27], which
represents the information contained in a raw audio instance
through a list of encoded vectors. These features are modeled
with four different machine learning models—support vector
machine (SVM), random forest, LightGBM, and XGBoost—to
classify individuals with and without PD.

Figure 1 provides an outline of the data analysis system. Our
contributions can be summarized as follows:

• We report findings from one of the largest data sets with
real-world variability, containing 726 unique participants
mostly from their homes.

• We analyzed the audio features of speech to predict PD
versus non-PD with an area under the curve (AUC) score
of 0.753.

• We provide evidence that our model prioritizes MFCC
features and a subset of dysphonia features [12,28], which
is consistent with previous literature.
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• Our model performs consistently well when tested on
gender- and age-stratified data collected in a controlled

laboratory environment and in the wild.

Figure 1. An outline of our approach for solving the speech task of uttering “The quick brown fox...”.

Methods

Recruitment and Data Collection
We collected data from 726 unique participants uttering the
sentences, “The quick brown fox jumps over the lazy dog. The
dog wakes up and follows the fox into the forest, but again the
quick brown fox jumps over the lazy dog,” using PARK [29]
website. Figure 2 provides a brief overview of the data
collection, storage, transfer, and analysis mechanisms. The users
are recorded via a webcam and a microphone connected to the

PC or laptop, and the recordings are uploaded to a server. Figure
3 shows images of some of the study participants, and Figure
4 shows the age distribution of the participants. The number of
participants without PD is 1.8 times the number of participants
with PD. Most of the participants with PD are concentrated in
the age range of 40 to 80 years. However, participants without
PD outnumber those with PD in the age group 20 to 40 years.
Similarly, participants with PD significantly outnumber those
without PD in the age group of 80 to 90 years. Table 1 provides
the demographic information of the study participants.

Figure 2. An overview of our data collection, storage, and analysis pipeline.
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Figure 3. Some screenshots of our subjects while providing the data. All the subjects except B provided data without any supervision. B, D, E, and F
have been diagnosed with Parkinson disease. Electronic informed consent was taken from the participants to use their photos for publication.

Figure 4. A bar plot showing the age distribution of participants with PD and those without PD in our data set. PD: Parkinson disease.
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Table 1. Demographic composition of our data set (N=726).

Participants without PDParticipants with PDaCharacteristics

464 (63.9)262 (36.1)Total, n (%)

Gender, n (%)

300 (64.6)101 (38.5)Female

164 (22.5)161 (61.4)Male

57.98 (14.2)65.92 (9.2)Age (years), mean (SD)

Country, n (%)

419 (90.3)199 (75.9)United States

45 (9.7)63 (24)Other

N/Ab7.88 (5.41)Years since diagnosed, mean (SD)

aPD: Parkinson disease.
bN/A: not applicable.

Among our 726 unique participants, 262 (36.1%) had received
the diagnosis of PD, whereas the others were participants
without PD. We obtained contact information of patients with
PD from local clinics and various PD support groups.
Participants without PD were recruited from Amazon
Mechanical Turk. During data collection, informed consent of
all participants was obtained in accordance with the protocol
agreed upon between the researchers and the institutional review
board of the University of Rochester. Among the 726 unique
participants, only 54 (7.4%) provided data in the laboratory
under the guidance of a study coordinator using the PARK tool;
the rest of the 672 (92.6%) participants used the PARK system
from their homes to provide data. Having participants perform
the tasks at home and in the laboratory allowed us to compare
the results across both conditions. No participant appeared in
either set, and all of our participants used the identical PARK
protocol.

The gender distribution in the data set was skewed, especially
for female participants. Among all participants, 55.2% (401/726)
were women, and 44.8% (325/726) were men. However, among
participants with PD, only 38.5% (101/262) were women, and
for participants without PD, 64.6% (300/464) were women.
Most of the participants with PD were in the age range of 40 to
80 years, but most of the younger (20-40 years) and older (80-90
years) participants were from the group without PD and the
group with PD, respectively.

As our data were collected through a web-based framework,
we do not have the MDS-UPDRS scores for our participants
because collecting them requires additional input from doctors.
Among all the participants in our PD group, only 3 participants
replied in affirmative that they had taken medication 2 hours
before taking the test; others replied in the negative. Therefore,
we assumed that medication effects were negligible for the
purposes of this study.

Data Preprocessing
During data collection, participants often took some additional
time to start to utter the task sentences and stop the recording
once the sentences were uttered. Hence, we had a substantial
amount of noisy and irrelevant data at the beginning and end
of most data instances (Figure 1). To remove irrelevant data,
we used the Penn Phonetics Lab Forced Aligner Toolkit (P2FA)
[30]. Given an audio file and transcript, it attempts to predict
the time boundaries in which each of the words in the transcript
was pronounced. P2FA applies a combination of hidden Markov
models [31] to predict the most likely sequence of phonemes
for a given audio and Gaussian mixture models to combine
those phonemes into words and obtain their time boundary using
a predefined dictionary [32]. From the output of this system,
we can obtain the starting time of the first word recognized by
the P2FA and the ending time of the last word recognized by
the P2FA. We used the audio segments between them for further
analysis.

Acoustic Features Extraction
We extracted features by combining outputs of multiple sources:
Praat features [33] obtained through the Parselmouth Python
interface [34] and the previously used dysphonia features
relevant for PD analysis [12,35,36]. After calculating all the
features, we constructed a correlation matrix of the feature
values to calculate the degree of correlation between them.
Then, we iterated over each pair of features in an unordered
fashion, and if the correlation coefficient between them was
above 0.9, we dropped one of those features from further
analysis [37]. Table 2 contains a short overview of the features
used in our analysis; the feature names in italicized text are
those used for building the models. We provide a more
comprehensive description of the features in Multimedia
Appendix 1 [12,14,36,38]. Some of our definitions were adapted
from the official Praat documentation [33].
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Table 2. Names of all the features, code source used for collecting them, and a short descriptiona.

Short descriptionCode sourceFeature

Pitch

Median principal frequencyLittle et al [36]MedianPitch b

Mean principal frequencyBoersma and Weenink [33]MeanPitch

SD in principal frequencyLittle et al [36]StdDevPitch

Jitter

Perturbation in principal frequency (mean variation)Little et al [36]MeanJitter

Perturbation in principal frequency (median variation)Little et al [36]MedianJitter

Average absolute difference between consecutive periods, divided by the average
period

Boersma and Weenink [33]LocalJitter

Average absolute difference between consecutive periods measured in secondsBoersma and Weenink [33]LocalAbsoluteJitter

Average absolute difference between a period and the average of it and its two
neighbors

Boersma and Weenink [33]RapJitter

5-point period perturbation quotientBoersma and Weenink [33]Ppq5Jitter

Difference of differences of periods of principal frequencyBoersma and Weenink [33]DdpJitter

Shimmer

Amplitude perturbation (using mean)Little et al [36]MeanShimmer

Amplitude perturbation (using median)Little et al [36]MedianShimmer

Average absolute difference between amplitudes of consecutive periodBoersma and Weenink [33]LocalShimmer

Average absolute base-10 logarithm of the difference between amplitudes of
consecutive period

Boersma and Weenink [33]LocaldbShimmer

3-point amplitude perturbation quotientBoersma and Weenink [33]Apq3Shimmer

5-point amplitude perturbation quotientBoersma and Weenink [33]Apq5Shimmer

11-point amplitude perturbation quotientBoersma and Weenink [33]Apq11Shimmer

Shimmer calculated by difference in differences of amplitudeBoersma and Weenink [33]DdaShimmer

MFCCc

13 features of mean MFCCLittle et al [36]MeanMFCC (0-12)

13 features of mean variation of MFCCLittle et al [36]VariationMFCC (0-12)

4 features capturing relative band power in 4 spectrum rangesTsanas et al [39]RelBandPower (0-3)

Signal-to-noise ratioBoersma and Weenink [33]HNR d

Pitch estimation uncertaintyLittle et al [36]RPDE e

Measure of stochastic self-similarity in turbulent noiseLittle et al [36]DFA f

Measure of inability of maintaining constant pitchLittle et al [36]PPE g

aWe collected the features using the code or methodology described in the corresponding code-source entry.
bThe correlated features were removed, and features in italicized text were used to build the models. Feature names are preceded by the loosely defined
umbrella category they belong to.
cMFCC: mel-frequency cepstral coefficient.
dHNR: harmonic-to-noise ratio.
eRPDE: recurrence period density entropy.
fDFA: detrended fluctuation analysis.
gPPE: pitch period entropy.

Embedding Features Extraction
We extracted deep learning–based PASE embeddings [27] for
our audio files. PASE represents the information contained in

a raw audio instance through a list of encoded vectors. To ensure
that the encoded vectors contain the same information as the
input audio file, it decodes various properties of the audio file,
including the audio waveform, log power spectrum, MFCCs,
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four prosody features (interpolated logarithm of the fundamental
frequency, voiced or unvoiced probability, zero-crossing rate,
and energy), and local InfoMax, from the encoded vectors. The
encoded vectors must retain relevant information about the input
audio file to decode all these properties successfully.

As these properties represent the inherent characteristics of the
input audio file rather than any task-specific features, they have
been used to solve a host of downstream tasks, such as speech
classification, speaker recognition, and emotion recognition.
Therefore, we also used them for PD detection.

Experiments
For each feature set, we applied a standard set of machine
learning algorithms, such as SVM [40], XGBoost [41],
LightGBM [42], and random forest [43], to classify PD versus
non-PD. SVM separates the data into several classes while
maintaining the maximum possible margin among the classes.
A random forest is built as an ensemble of decision trees; each
decision tree builds a tree using a subset of features and learns
if-else type decision rules to make a prediction. We also used
XGBoost and LightGBM, algorithms based on gradient boosting
where they build successively better models by refining the
models at hand.

We used a leave-one-out cross-validation training strategy;
using this strategy, one sample of data from the data set is left
out, and the other n−1 samples are used to create a model and
predict the remaining sample. We used metrics such as binary
accuracy and AUC to evaluate our model’s performance. AUC
is the area under the receiver operating characteristics (ROC)
curve. The ROC curve is constructed by calculating the AUC
produced by taking the ratio of the true-positive rate and the
false-positive rate while varying the decision threshold. AUC
has the highest value of 1, which denotes that the two classes
can be separated perfectly, whereas an AUC value of 0.5
indicates that the model cannot distinguish between the two
classes. Because our data set was imbalanced, AUC is a much
better metric for understanding the true performance of our
model. To reduce the effects of data imbalance, we used data
augmentation techniques such as the synthetic minority
oversampling technique [44] and SVM synthetic minority
oversampling technique [45].

Model Interpretation Technique
To interpret the models, we used the Shapley additive
explanations (SHAP) technique based on the Shapley value.
The Shapley value is a game-theoretic concept of distributing

the payouts fairly among players [46]. In the machine learning
context, each individual feature of an instance can be thought
of as a player, and the payout is the difference between an
instance’s prediction and the average prediction. We choose
SHAP for two reasons: (1) it is well suited for explaining the
output of any machine learning model, and (2) it is the only
feature attribution method that fulfills the mathematical
definition of fairness.

To use SHAP to explain gradient boosting and tree-based models
such as XGBoost, Lundberg et al [47] introduced methods to
provide a polynomial time model to compute optimized
explanations. Their method can generate local
interpretations—how the features affect one particular prediction
of a data instance—and then combine those local interpretations
to make global interpretations about features present in the entire
data set. By setting up a class of features to condition on, they
traverse the tree in the following manner: if we are traversing
on a node that was split based on a feature we are conditioning
on, we simply follow the decision path; otherwise, the results
from the left and right subtrees originating from the current
node are computed recursively, and their results are added
through a weighted summation strategy, thus computing the
SHAP value for the feature in question.

Results

Overview
The data were preprocessed, and both standard acoustic features
(eg, pitch, jitter, shimmer, and MFCC) and deep learning–based
audio embedding features, representing an audio clip as a feature
vector, were extracted; henceforth, we call these standard
features and embedding features. In the rest of the Results
section, we discuss the results from the models built on the
entire data set, interpretations of the best model on the entire
data set, and results and interpretation from specialized models
on gender-stratified and age-trimmed data sets.

Detecting PD From the Entire Data Set
Table 3 contains the AUC and accuracy scores of the four
machine learning models trained on the standard features and
embedding features separately. Applying XGBoost on the
standard features showed the best performance of 0.75 AUC
and 0.74 accuracy. We also noticed that models trained on
standard features work better than those trained on embedding
features.
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Table 3. Performance on the entire data set. The performance of various machine learning algorithms using the standard and embedding features on a

data set combining data from both home and laboratory environmentsa.

Embedding featuresStandard featuresAlgorithm

AccuracyAUCAccuracyAUCb

0.6920.7380.7350.751SVMc

0.7080.7260.7200.745Random forest

0.6930.7370.7200.753LightGBM

0.6890.7220.7410.750 dXGBoost

aModels using standard features perform better than the models using embedding features in terms of both binary accuracy and area under the curve.
Although the performance of the models is almost similar in terms of area under the curve metric, XGBoost outperforms others by considering both
the area under the curve and accuracy metrics simultaneously.
bAUC: area under the curve.
cSVM: support vector machine.
dVariable outperforms all others by taking both area under the curve and accuracy into account.

Model Interpretation
The goal of SHAP is to explain the model’s prediction of any
instance as a sum of contributions from its feature values; if a
data instance can be thought of as Xi=[f1, f2,...fN], SHAP will
assign a number to each of these fj features, denoting the impact
of that feature—both the magnitude and direction—on the

model’s prediction. Then, all these local explanations are
aggregated to create a global interpretation for the entire data
set. A global interpretation is presented in the first part of Figure
5; the top 10 most impactful features, ranked by having the most
impact to the least, are presented. To calculate each feature’s
impact, all of its SHAP values across all the data instances are
gathered, and then the mean of their absolute values is
calculated.

Figure 5. Shapley additive explanations analysis of our best performing models on 3 data sets: (A) main model (ie, entire data set), (B) female model
(ie, female only), and (C) age-trimmed model (all subjects are older than 50 years).

Features that have an impact on the model’s performance are
typically the spectral features: the mean values or the variation
of MFCC in each spectrum range. Apart from that, some other
complex features such as recurrence period density entropy
(RPDE; a measure of uncertainty in F0 estimation), PPE (a
measure of inability to maintain a constant F0), and
harmonic-to-noise ratio (HNR) also affected the interpretation
presented in the first part of Figure 5.

Gender- and Age-Stratified Analysis
The characteristics of a person’s voice are greatly influenced
by age and gender. In Figure 6, we see that men and women

display a changing characteristic in their voices as they get
older. Female voices have a higher F0 value, but it decreases
with age. Males typically have a higher F0 value in their youth,
which decreases with age and then increases roughly after the
age of 45 years. Therefore, it can produce confounding effects
when analyzing PD from audio, where the machine learning
model uses audio features to detect PD. To minimize the effect
of confounding factors, researchers trained separate models on
data from male and female participants [28] or analyzed an
age-trimmed data set by considering data from participants older
than 50 years [4,29].
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Figure 6. Changes in fundamental frequency F0 of voice as a function of gender and age (collected from Tsanas et al [13]).

Building Specialized Models for Each Gender- and
Age-Trimmed Analysis
The performance metrics of the machine learning models trained
on the male, female, and age-trimmed data sets are shown in
Table 4. By comparing the performance with metrics presented
in Table 3, we can see that the models that used male- or

age-trimmed data sets performed at par or better than the models
that used the whole data set to train. However, there was a
performance drop in the models using the female data set. Table
1 shows that females are overrepresented in the non-PD group
and underrepresented in the PD group, leading to data imbalance
and possibly lowering performance for the female-only model.

Table 4. Gender- and age-stratified models. Three separate data sets were constructed: a male data set with male participants, a female data set with
female participants, and age-trimmed data set by excluding the participants younger than 50 years. For each of these data sets, a separate model was
constructed, and its performance is reported below (N=726).

Age-trimmed (male, n=366 and female, n=426)Female (n=477)Male (n=415)Algorithm

AccuracyAUCAccuracyAUCAccuracyAUCa

0.7230.7550.7630.6590.7170.795SVMb

0.7130.7390.7880.6990.7020.758Random Forest

0.7120.7490.7680.7170.6650.725LightGBM

0.7040.7420.7710.6820.7170.762XGBoost

aAUC: area under the curve.
bSVM: support vector machine.

We also analyzed the features that drive the performance of
these specialized models through SHAP analysis. The second
part of Figure 5 shows the most salient features ranked by their
SHAP value and the distribution of the impact of each feature
on the model’s decision-making. The most important features
are still dominated by the MFCC-related features or complex
features such as the HNR, relative band power in different
frequency ranges (RelBandPower1, RelBandPower3), RPDE
(uncertainty in F0 estimation), perturbation in F0 (DdpJitter),
or perturbation in amplitude (Apq11Shimmer). However, one
noticeable fact is that three-pitch and jitter-related
features—MedianPitch (median principal frequency,
StdDevPitch (SD in principal frequency) and MedianJitter
(median variation in F0)—also affected the model’s prediction,
which was not noticed in the SHAP analysis run on the
all-data-model.

Similarly, we interpreted the salient features of the age-trimmed
data set in the third part of Figure 5. We noticed that the most
salient features usually come from the MFCC feature groups,
complex features (RPDE, PPE, and HNR), relative band power
(RelBandPower1, RelBandPower2, and RelBandPower3), and
pitch-related features. In addition, the pitch-related features also
drove the prediction of the model.

Discussion

Limitations
In all of our experiments, we chose leave-one-out
cross-validation to maintain uniform experimental settings
between different models, data augmentation, and data set
combinations because K-fold cross-validation can show high
variance in performance based on how stratified the folds are.
However, we acknowledge that our choice introduces the
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problem of overfitting and increases the computational
complexity manifold. Therefore, we could not run extensive
hyperparameter tuning to improve the performance of our
models. By carefully stratifying the folds and maintaining the
same fold settings for comparable experimental settings, K-fold
cross-validation may enable us to achieve higher performance
with lower computational complexity.

Moreover, our chosen metrics, accuracy and ROC AUC, can
be overly optimistic because of the unbalanced nature of our
data set. Metrics such as ROC–Precision-Recall balanced
accuracy, and more information about sensitivity and specificity
may shed more light on how we are performing in the minority
class. In the future, we plan to apply other cross-validation
techniques and better metrics to conduct our experiments and
report our performance.

Detecting PD From Regular Conversation
Some of the most common voice disorders induced by PD are
dysphonia (distortion or abnormality of voice), dysarthria
(problems with speech articulation), and hypophonia (reduced
voice volume). Two speech-related diagnostic tasks are
commonly used to detect PD by exploiting the changing vocal
pattern caused by these disorders: (1) sustained phonation (the
participant is supposed to utter a single vowel for a long time
with constant pitch) and (2) running speech (the participant
speaks a standard sentence). Little et al [12] developed features
for detecting dysphonia in patients with PD. Tsanas et al [25]
focused on the telemonitoring of self-administered sustained
vowel phonation task to predict the Unified Parkinson’s Disease
Rating Scale rating (on Rating Scales for Parkinson’s Disease
2003), a commonly used indicator for quantifying PD symptoms.
These studies trained their models with data captured by
sophisticated devices (eg, wearable devices, high-resolution
video recorder, and the Intel at-home–testing-device
telemonitoring system) that are often not accessible to all and
are difficult to scale. The performance of these models can be
significantly reduced when classifying data collected in home
acoustics. In addition, correctly completing the sustained
phonation task requires following a specific set of guidelines,
such as completing the task in one breath, which can be difficult
for older individuals.

In contrast, we analyzed the running speech task from the data
collected by using a web-based data collection platform that
can be accessed by anyone anywhere in the world and requires
only an internet-connected device with an integrated camera
and microphone. In addition, the running speech task does not
require conforming to specific instructions and is more similar
to regular conversation; therefore, the model can be potentially
augmented to predict PD from a regular conversation—a
potential game-changer in PD assessment. In the future,
user-consented plug-ins could be developed for apps such as
Alexa, Google Home, or Zoom, where audio is transmitted
between persons. Anyone who consents to download the plug-in
and uses it while on the phone, over Zoom, or giving virtual or
in-person presentations could benefit from receiving an informal
referral to see a neurologist, when appropriate. The plug-in
would not store the participants’ data unless they opt to build

a personalized profile to ensure privacy and ethical usage of
our framework.

Validating Model Interpretation
The features that SHAP found to have an impact on modeling
decisions are well supported by previous research. For example,
MFCC features have already proven to be useful in a wide range
of audio tasks such as speaker recognition [48], music
information retrieval [38], voice activity detection [49], and
most importantly, in voice quality assessment [50]. Similarly,
the high impact of the HNR and the measures of uncertainty in
F0 estimation (RPDE) and inability to maintain a constant F0
(PPE) on the model’s output are in congruence with the findings
from Little et al [12]. However, explaining the first part of
Figure 5 in light of PD-induced vocal impairment is a difficult
task. MFCC features are calculated by converting the audio
signal into the frequency domain, and they denote how energy
in the signal is distributed within various frequency ranges.
Therefore, providing a physical interpretation of the SHAP
values corresponding to the MFCC features is not
straightforward. Similarly, Little et al [12] designed the RPDE
and PPE features to model a sustained phonation task (uttering
“ahh”) with the assumption that healthy participants will be
able to maintain a smooth and regular voice pattern. In contrast,
uttering multiple sentences introduces considerable variation
in the data, adding a wide set of heterogeneous patterns.
Therefore, the underlying assumptions behind constructing these
features do not hold for our task of uttering multiple sentences.

We conduct an empirical validation of the SHAP output shown
in the first part of Figure 5. We incrementally add one feature
at a time to build a dynamic feature set, train successive models
on that feature set, and report the accuracy and AUC
performances. We see that the performance of our model
saturates after adding 7 to 8 features. Therefore, we can say that
the SHAP analysis teases out the most important features driving
the model’s performance successfully.

Why Not Stratified Analysis Only?
We built models inclusive of all genders for several reasons.
First, there are potential shared characteristics among vocal
patterns of all genders that can be relevant for detecting PD.
Second, dividing the data set into two portions reduces the
available training data for each model, which may, in turn,
reduce the generalization capability of each model. In addition,
our model analyzes data from patients of all ages. Although
most people diagnosed with PD are older than 60 years,
approximately 10% to 20% of the population diagnosed with
PD are younger than 50 years, and approximately half of them
are younger than 40 years [51]. As anecdotal evidence, Michael
J Fox was diagnosed with PD at the age of 29 years [52], and
Muhammad Ali had PD by 42 years [53]. In our data set, there
were also a minority of patients with PD who were younger
than 50 years (Figure 4). On the basis of these observations, we
believe that our system should provide access to all people,
irrespective of age. PD does not discriminate by age while
affecting a person, and an automated system should not
discriminate based on age and provide equitable services to
people of all ages. However, these factors can function as
confounders in PD analysis. Therefore, we provided additional
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analysis to ensure that our model does not use the idiosyncrasies
of group-specific information to make predictions.

Performance Excluding Laboratory Environment Data
When the data were collected in the laboratory, participants had
access to a clinician providing support using a consistent
recording setup and dedicated bandwidth. In contrast, the data
collected in the home setting involved no assistance and included
the real-world variability of heterogeneous recording setups and
inconsistent internet speed. In theory, the data collected at the
laboratory and home were very different from each other.

To ensure that our model works equally well without the clean
lab data, we designed two experiments. In experiment 1, we
removed clean lab data, which was approximately 7.4% (54/726)
of the entire data set, retrained our model on the remaining 672
participants using the leave-one-out validation procedure, and
calculated the performance metrics. In experiment 2, we
randomly removed 7% (roughly 54 data points) of home data
from the entire data set (while keeping the lab data intact),
building a model with the remaining 93% data with the
leave-one-out cross-validation method. Then, we conducted
experiment 2 10 times and calculated the average performance
from these 10 runs. We found that the AUC metric across these
three experiments was fairly consistent, with a very small 0.015
decrease in AUC when removing lab data, demonstrating that
our framework performs equally well across the lab and home
data.

Label Inconsistency and Predicting Tremor Score
Using the PARK [29] protocol, we collected one of the largest
data sets of participants conducting a series of motor, facial
expression, and speech tasks following the MDS-UPDRS PD
assessment protocol [3]. Although we analyzed only the speech
task in this study, the data set can be potentially used to automate
the assessment of a large set of MDS-UPDRS tasks and facilitate
early-stage PD detection, thus improving the quality of life for
millions of people worldwide. However, deploying the data
collection protocol on the web and facilitating access to anyone
anywhere around the world comes at a cost. To date, all of our
participants with PD have been clinically verified to be
diagnosed with PD. Therefore, the labels of the PD data points
are reliable. However, the participants without PD did not
undergo clinical verification. Our data collection protocol asked
them appropriate questions to check whether they had been
diagnosed with PD and collected data when they answered in
the negative. However, we cannot discount the possibility that
a small subset of our population without PD is in the very early
stage of PD and is oblivious about it. At present, there are
estimated to be around 1 million patients with PD in the United
States, out of a population of 330 million [51], yielding a PD
prevalence rate of 0.3%. However, as our non-PD data set was
largely tilted toward people older than 50 years, the rate in our
data set could be higher than 0.3%. Even if we consider a liberal
1% prevalence rate, the number of individuals with undiagnosed
PD in our control population is likely low (at most 4.6 persons).
Therefore, we believe that the non-PD data labels are generally
reliable. In the future, we plan to model tremor score in (0-4
range for each task; 0 for no tremor, and 4 for severe tremor)

instead of a binary label following the MDS-UPDRS protocol
to address this problem more thoroughly.

Building a More Representative Data Set
The PARK protocol is web enabled, allowing anyone with
access to the internet to contribute data. We plan to augment
our data set by adding more non–native English speakers,
females, and participants with PD. As our PD data are collected
through contacts from local PD clinics and non-PD data through
Amazon Mechanical Turk, most of our participants were from
the United States or other English-speaking countries. To make
our model more robust on data from non–native English
speakers, we are in process of collecting both PD and non-PD
data from non–native English-speaking countries. In addition,
our current protocol can collect data from people with computer
and internet access only, and therefore, it can potentially exclude
underserved people. In the future, we plan to build desktop and
mobile apps that can collect data offline to build a more
inclusive framework.

Our best model for female data performed worse than its male
counterparts, as shown in Table 4. We attribute this degraded
performance PD or non-PD imbalance for female participants
in our data set: the PD-to-non-PD ratio for females was 101 out
of 300 (Table 1). Previous epidemiological studies have shown
that both the incidence and prevalence of PD are 1.5 to 2 times
higher in men than in women [54,55]. Therefore, any randomly
sampled data set for PD will have a higher prevalence of males,
contributing to models that are more biased toward males. Our
immediate plan is to prioritize collecting balanced data from
all genders, ages, and races across geographical boundaries,
leading to a balanced data set.

Our data set also has the ubiquitous problem of data imbalance
in diagnostic tests: the amount of data from participants without
PD is 1.8 times more than their PD counterparts. Therefore,
there is a risk that the model will be biased toward predicting
the majority non-PD class as default and yield a high
false-negative score. To address this, we plan to recruit more
participants with PD in the future to make our data set more
balanced. Another potential approach is to run the analysis on
a subset of the data set produced by conducting proper age,
gender, and matching of patients with and without PD.

As shown in Table 1, our participants with PD were diagnosed
7.88 (SD 5.41) years ago. Owing to limited data availability,
we did not conduct an analysis on early-stage PD prediction.
In the future, we plan to include more participants in the early
stages of PD and build models that can detect them. We will
especially focus on recruiting participants with PD in the age
range of 20 to 40 years to analyze the very early-stage onset of
PD among young adults. Furthermore, we plan to collect and
analyze multiple speech instances from each person to reduce
person-specific variability and obtain a more holistic view of
their PD state.

Increasing Model Performance
Although we consider AUC to be a better metric for our data
set, our model performs 10% better than always choosing
non-PD as the prediction in terms of binary accuracy. To be
practically deployable in clinical settings, the performance needs
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to be improved further. We will focus on four promising
avenues: making the data set balanced, designing better features
capable of modeling the nuanced pattern in our data, making
our model resilient to noise present in our data, and
deconfounding the PD prediction from age and gender variables.

To remove noise, we plan to augment the techniques proposed
in Poorjam et al [56] to automatically enhance our data quality
by detecting the segments of data that conform to our
experimental design. Moreover, as discussed above, gender and

age can appear as confounding variables in the PD prediction
task. In this paper, we have shown that our unified model and
stratified sex-specific models have similar performance.
However, we plan to build better models to systematically
deconfound the effects of both age and gender variables while
benefiting from them simultaneously. We can achieve this by
incorporating the causal bootstrapping technique—a resampling
method that considers the causal relationship between variables
and negates the effect of spurious, indirect interactions, as
outlined by Little and Badawy [57].
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